International Journal of Management, IT & Engineering
Vol. 14 Issue 02, February 2024
ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

Enhancing Resilience: A Solution Framework for Handling Third-Party Service
Disruptions in FinTech Mobile Applications

Amol Gote
Vikas Mendhe

Abstract

In the realm of Financial Technology (FinTech), mobile applications are
pivotal for facilitating transactions, including loan applications. However,
disruptions in critical third-party services, such as credit bureaus, can
significantly impact the user experience. This paper introduces a solution
framework for proactively managing these disruptions. During the service
downtime, user transactions continue to be processed. These applications are

Keywords: designed to detect service interruptions through specific exceptions and are

subsequently rerouted to dedicated queues, along with their request payloads.
FinTech; This process triggers the transmission of an indicator to the mobile
Mobile Applications; application, facilitating appropriate user messaging regarding the service
ServiceDowntime; disruption. Post such a service down event, as soon as the first application is
User Experience; successfully processed without encountering third-party service exceptions,
Queuing: an event is triggered to process the remaining queued applications. As part of

Loan Applications; :his processing for ea}ch gipplicat_ion at the end, the user rece_iyes a notification

. S 0 resume their application. This paper emphasizes the critical role of user-
Thqu-party Services; centricity, proactive communication, and strategic queuing in effectively
Credit Bureaus. managing disruptions, particularly those involving essential services like
credit bureaus, within FinTech mobile applications.

Copyright © 2024International Journals of Multidisciplinary Research
Academy.All rights reserved.

Author correspondence:

Amol Gote

Solution Architect, Plainsboro, New Jersey, USA.
LinkedIn: https://www.linkedin.com/in/aamolgote
Email: aamolgotewrites@gmail.com

Vikas Mendhe

Senior Consultant, Austin, Texas, USA

LinkedIn: https://www.linkedin.com/in/vikas-mendhe-69260012
Email: vikas.mendhe@gmail.com

1. Introduction

In the ever-evolving landscape of FinTech, mobile applications have become pivotal tools for users,
offering unparalleled convenience and efficiency in conducting financial transactions. Among the most
critical functions of these applications is the seamless processing of essential operations, particularly loan
applications, which often rely on the integration of vital third-party services. However, in this intricate web
of interconnected systems, vulnerabilities emerge when these third-party services encounter downtime,
presenting a formidable challenge to both user experiences and the reliability of the FinTech ecosystem.

The reliance of FinTech mobile applications on external services, such as credit bureaus, underscores the
paramount importance of the continuous availability of these services. Any disruption would impact the user
experience of the applicant using the mobile application. Acknowledging the gravity of this challenge, this
paper delves into a proactive solution framework designed to effectively manage these disruptions.

In this paper, we introduce a solution that not only ensures the uninterrupted flow of loan applications
during service interruptions but also prioritizes user-centricity through clear and timely communication.
Additionally, this framework is proficient at both identifying disruptions and implementing strategic queuing
to ensure data integrity and streamline the process of resuming applications once normal service functionality
is restored.

111 International journal of Management, IT and Engineering
http://www.ijmra.us, Email: editorijmie@gmail.com

https://www.linkedin.com/in/aamolgote
mailto:aamolgotewrites@gmail.com
https://www.linkedin.com/in/vikas-mendhe-69260012
mailto:vikas.mendhe@gmail.com

ISSN: 2249-0558 Impact Factor: 7.119

Our study transcends technical solutions, placing a robust emphasis on user experience, proactive
communication, and strategic queuing as pivotal components in the effective management of disruptions.
Particularly, we highlight the management of critical service disruptions involving entities like credit
bureaus. Our aim is to contribute to the resilience of FinTech mobile applications, enhance the user
experience, and strengthen the mobile application's resilience with third-party services.

2. Common Workflow Patterns in Mobile Applications.

In this section, we elucidate the existing flows of mobile applications designed to serve various business
use cases, such as processing unsecured loan applications for purposes like home improvement and medical
financing. This flow adheres to the conventional structure of mobile applications, where the mobile app
initiates backend APIs (Application Programming Interface) requests. Subsequently, these backend APIs, in
turn, invoke third-party external partner services, as illustrated in the diagram provided.

External Partner

Consumer : Fintech)
: Services
Fintech Backend
Infrastructure
: s Y
: Underwriting @ Credit
= Service == > @ Bureau
— > s 4
: e ~,
TabletfiPad Mobile : Fraud @ ,| =L, mhird Party
: Service 7| B0 Fraud Service
. S

Figure 1.Common Workflow Patterns in Mobile Applications.

In this scenario, when the credit bureau service encounters downtime or begins to throw unexpected
exceptions, these issues propagate upward, directly impacting the user experience of applicants seeking
consumer loans. This can lead to suboptimal user experiences, customer abandonment, and ultimately, a
significant loss of business revenue.

To address these challenges and ensure a seamless, positive user experience, it is crucial to effectively
manage critical service downtime exceptions. The following section will delve into the proposed solutions to
tackle these issues.

3. Handling Critical service down

In this scenario, APIs invoking third-party critical services, such as those with credit bureaus, incorporate
resiliency measures. Calls to third-party APIs are designed to handle service downtime exceptions or
unexpected errors. If the calling API detects such unexpected behavior, it duplicates the application requests
and redirects them to a queue as messages. Once the requests are redirected to the queue, the APIs invoked
by the mobile application send an indicator back as an API response, indicating that one of the business-
critical services required to process the application is down. Based on this indicator, the mobile application
seamlessly manages the user experience and informs the user that one of the critical services is currently
unavailable. Users are assured that they will receive a notification once the service resumes and their
application will be processed.Depending on the health of the third-party service, further applications may
begin queuing up for processing.

112 International journal of Management, IT and Engineering
http://www.ijmra.us, Email: editorijmie@gmail.com

ISSN: 2249-0558 Impact Factor: 7.119

External Partner

Consumer : Fintech i
: , Services
: Fintech Backend E
: Infrastructure i
: | p .
: Underwriting @ EA Credit
- = Service api AN - : @Bureau
i, At)
: | i - 3!
TabletiPad Mobile : Fraud % i i .| =l Third Party
. . 3 - Lal " — -
- Service i i Fraud Service
E E \ y
iRequestsé
! Sentto !
B || e
Queue i

Figure 2. Handling critical service down with a Queue.

The queue messages contain the request payloads. For storing these intermittent messages, you have the
flexibility to choose between using any type of queue or storing them in a database. If the decision is to store
them in a database, it becomes essential to manage message states using indicators such as 'to process,’
'processing, and 'processed.’

e For queue-based solutions in the cloud, you have options like:
e AWS (Amazon Web Services) Queues

e Microsoft Azure Service Bus

e Google Cloud Pub/Sub

If you prefer not to use cloud services, other queuing solutions include:
e RabbitMQ
e Apache Kafka
e Microsoft Message Queuing (MSMQ)

If the request payload is large, an alternative approach is to create a database record with a GUID
(Globally Unique Identifier) identifier and push that identifier to the queue. In this scenario, when a message
is dequeued from the queue, the processing backend job retrieves the request payload from the database using
the associated identifier. This method efficiently manages large payloads while ensuring data integrity and
retrieval when needed.For storing the intermittent state in the database, we can leverage the below table
schema as a starting point and tweak it according to the application-specific business:

e partner_name — external third-party partner name e.g. TransUnion

e service_name — Third-party external service name e.g. Bureau_Report

e current_state — this stores the request payload.

e is_processed — this is an indicator to identify the processing stages like, already processing,
processing, processed.

e The remaining columns are self-explanatory.

113 International journal of Management, IT and Engineering
http://www.ijmra.us, Email: editorijmie@gmail.com

ISSN: 2249-0558 Impact Factor: 7.119

Column Name Datatype PK NN UQ B UN ZF Al G Default/Expression

id INT 8 860 000 O

user_id INT O 000000 O nNuw

loan_id INT O 000000 O nNuw

service_name VARCHAR(50) O 0O00 000

partner_name VARCHAR(30) 0O 000000 O N

current_state MEDIUMTEXT O 00000 O0 Qg nuw

is_processed TINYINT(1) O 000000

process_date DATETIME O 0O 000 00O O nNuw

create_date TIMESTAMP O 0 O O O O [CcuRRENT_TIMESTAMP
B E R B GEB & & &

Figure 3. Database table for storing request state.

4. Processing Queued Messages When the Service Recovers.

In the previous section, we discussed how messages are queued based on the health of the third-party
external service. Once one of the requests to the service is completed successfully, it serves as an indicator
that the service is on the path to recovery. To ensure accuracy, the decision to declare the service as healthy
can be configured to wait for a certain number of successful requests to be processed. Relying solely on the
result of a single request might not be optimal, especially if the third-party external service is in a recovery
stage. Once the threshold for the successfully processed requests is reached, the system will declare the status
of the service as healthy and then send a notification to the background job to start processing the messages
in the queue.

External Partner

Fintech .
Services

Consumer

Fintech Backend i
Infrastructure :

' ™

| Credit
7 Bureau
S

A
-
vZ|_ Third Party
=] Fraud Service

h vy

Underwriting
Service =]

Fraud a !
Service A i

-

¥

o) Trigger
L = e
i Queue Hrocessor
: Job
1. Pull Messhges |

'|'|
=
3
)
i =
i i
=
]
A
i
i
[

I Queue Processor Job [-----4----z-2------ - !
2 Reprocess

' send Failed Service
fficafion Calls

T/ = 0o

_____________ Maotification Service

Send notification
fo user to resume
application

Figure 4. Processing queued applications once service turns healthy.

Once the backend job receives a notification to process the queued messages, it starts its job. As part of
this, each message performs the following steps:
e Dequeue the message from the queue.
e Depending on the strategy implemented to persist the request payload (as discussed in Section
3), retrieve the payload.

114 International journal of Management, IT and Engineering
http://www.ijmra.us, Email: editorijmie@gmail.com

ISSN: 2249-0558 Impact Factor: 7.119

e Call the external service with the retrieved payload and complete the remaining business
processes required for processing the loan application. If the call fails at this stage, move the
message to a separate exception queue for manual analysis.

e After completing the business process, send a notification to the end user using the notification
service. The notification service is another microservice responsible for sending various types of
notifications to end users. These notifications may include push notifications, SMS messages,
and email notifications.

Once a user receives the notification, the user can resume the application process, for a better user experience
message will contain a deep link for the mobile application, which will take the user to the exact next step in
the loan application process.Deep links are URLS that are designed to take users to specific content or screen
within a native mobile application, rather than just launching the app's home screen.

5. Benefits of the Resiliency Solutions Framework

Seamless User Experience: One of the primary advantages of this approach is its ability to maintain a
seamless user experience, even in the face of service disruptions. By promptly notifying users about service
unavailability and providing clear communication, the framework helps prevent frustration and
abandonment, ultimately enhancing user satisfaction.

Data Integrity and Reliability: The use of queuing mechanisms and payload storage strategies ensures
data integrity and reliability. Storing request payloads and managing message states in queues or databases
ensures that critical data and states remain accessible and secure, even during service downtime.

Resilience to Third-Party Service Failures: The framework's resiliency measures enable it to adapt to
third-party service failures efficiently. Duplicating and redirecting application requests to a queue, minimizes
the impact of service downtime on ongoing processes, allowing applications to queue up for later processing
when the service is restored.

In addition to the proactive resiliency measures outlined in this framework, it is essential to note that all
third-party services integrated also have robust retry patterns in place. These retry patterns are configured to
make multiple attempts, typically three times, with a 10-second delay between each attempt, to reestablish a
connection and successfully process requests in the event of temporary service disruptions. After three
retries, the approach of placing messages in the queue comes into play. By combining the retry patterns of
third-party services with a resiliency framework, we create a multi-layered approach to handle service
interruptions effectively.

6. Drawbacks for the Resiliency Solutions Framework

Complexity: Implementing the framework can introduce increased complexity to the application
architecture. The need for queuing mechanisms, message state management, and database integration may
require additional development efforts and maintenance.

7. Conclusion

In the FinTech world, where mobile applications serve as vital channels for critical transactions, the
resilience of these applications in the face of third-party service downtime is paramount. The Proactive
resiliency framework offers a solution to this challenge, prioritizing user-centricity, data integrity, and
streamlined processing.

Through the diligent handling of service disruptions, including the duplication and queuing of application
requests, the framework ensures that users experience minimal disruption and are promptly informed about
service unavailability. This commitment to user satisfaction enhances trust and fosters uninterrupted financial
operations. Furthermore, the framework's reliance on queuing mechanisms and payload storage strategies
guarantees data integrity and reliability, safeguarding essential data during service downtime. Additionally,
the system's adaptability to third-party service failures minimizes the impact on ongoing processes, allowing
applications to queue up for processing when services are restored.

While resiliency solution brings benefits, it is essential to acknowledge the complexity it introduces to
application architectures. Application development teams should be prepared for the additional effort and
maintenance required for additional components.

In conclusion, the resiliency framework exemplifies the importance of proactive communication and
strategic queuing in managing third-party service disruptions, especially those involving critical entities like
credit bureaus, in FinTech mobile applications. By prioritizing user satisfaction and data integrity, we
contribute to the resilience and reliability of these essential Fintech applications in an ever-evolving digital
landscape.

115 International journal of Management, IT and Engineering
http://www.ijmra.us, Email: editorijmie@gmail.com

ISSN: 2249-0558 Impact Factor: 7.119

References

[1]

Silva, Marco Anténio Rodrigues Oliveira, "Improving the resilience of microservices-based applications”,
University ofMinho, Dissertation reports, 19th Feb 2021.

[2] James Lewis, Martin Fowler, "Microservices: A Practitioner's Guide."
Retrieved from https://martinfowler.com/microservices, 21st Aug 2019
[3] Pethuru Raj, G. Sobers Smiles David, "Cloud Reliability Engineering: Technologies and Tools", 2021
[4] Roland Kuhn, Brian Hanafee, Jamie Allen, "Reactive Design Patterns”, Chapter 12. Fault tolerance and recovery
patterns, Feb 2017
[5] www.jrebel.com, "Guide to Microservices Resilience Patterns",
Retrieved from https://www.jrebel.com/blog/microservices-resilience-patterns, 1st April 2020
[6] IcePanel, "Top 6 message queues for distributed architectures” Retrieved from https://icepanel.medium.com/top-6-
message-queues-for-distributed-architectures-a3cbabf08993, 18th May 2023
116 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

