
International Journal of Management, IT & Engineering
Vol. 14 Issue 02, February 2024

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

111 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Enhancing Resilience: A Solution Framework for Handling Third-Party Service

Disruptions in FinTech Mobile Applications

Amol Gote

Vikas Mendhe

 Abstract

 In the realm of Financial Technology (FinTech), mobile applications are

pivotal for facilitating transactions, including loan applications. However,

disruptions in critical third-party services, such as credit bureaus, can

significantly impact the user experience. This paper introduces a solution

framework for proactively managing these disruptions. During the service

downtime, user transactions continue to be processed. These applications are

designed to detect service interruptions through specific exceptions and are

subsequently rerouted to dedicated queues, along with their request payloads.

This process triggers the transmission of an indicator to the mobile

application, facilitating appropriate user messaging regarding the service

disruption. Post such a service down event, as soon as the first application is

successfully processed without encountering third-party service exceptions,

an event is triggered to process the remaining queued applications. As part of

this processing for each application at the end, the user receives a notification

to resume their application. This paper emphasizes the critical role of user-

centricity, proactive communication, and strategic queuing in effectively

managing disruptions, particularly those involving essential services like

credit bureaus, within FinTech mobile applications.

Keywords:

FinTech;

Mobile Applications;

ServiceDowntime;

User Experience;

Queuing;

Loan Applications;

Third-party Services;

Credit Bureaus.

Copyright © 2024International Journals of Multidisciplinary Research

Academy.All rights reserved.

Author correspondence:

Amol Gote

Solution Architect, Plainsboro, New Jersey, USA.

LinkedIn: https://www.linkedin.com/in/aamolgote

Email: aamolgotewrites@gmail.com

Vikas Mendhe

Senior Consultant, Austin, Texas, USA

LinkedIn: https://www.linkedin.com/in/vikas-mendhe-69260012

Email: vikas.mendhe@gmail.com

1. Introduction

In the ever-evolving landscape of FinTech, mobile applications have become pivotal tools for users,

offering unparalleled convenience and efficiency in conducting financial transactions. Among the most

critical functions of these applications is the seamless processing of essential operations, particularly loan

applications, which often rely on the integration of vital third-party services. However, in this intricate web

of interconnected systems, vulnerabilities emerge when these third-party services encounter downtime,

presenting a formidable challenge to both user experiences and the reliability of the FinTech ecosystem.

The reliance of FinTech mobile applications on external services, such as credit bureaus, underscores the

paramount importance of the continuous availability of these services. Any disruption would impact the user

experience of the applicant using the mobile application. Acknowledging the gravity of this challenge, this

paper delves into a proactive solution framework designed to effectively manage these disruptions.

In this paper, we introduce a solution that not only ensures the uninterrupted flow of loan applications

during service interruptions but also prioritizes user-centricity through clear and timely communication.

Additionally, this framework is proficient at both identifying disruptions and implementing strategic queuing

to ensure data integrity and streamline the process of resuming applications once normal service functionality

is restored.

https://www.linkedin.com/in/aamolgote
mailto:aamolgotewrites@gmail.com
https://www.linkedin.com/in/vikas-mendhe-69260012
mailto:vikas.mendhe@gmail.com

 ISSN: 2249-0558Impact Factor: 7.119

112 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Our study transcends technical solutions, placing a robust emphasis on user experience, proactive

communication, and strategic queuing as pivotal components in the effective management of disruptions.

Particularly, we highlight the management of critical service disruptions involving entities like credit

bureaus. Our aim is to contribute to the resilience of FinTech mobile applications, enhance the user

experience, and strengthen the mobile application's resilience with third-party services.

2. Common Workflow Patterns in Mobile Applications.

In this section, we elucidate the existing flows of mobile applications designed to serve various business

use cases, such as processing unsecured loan applications for purposes like home improvement and medical

financing. This flow adheres to the conventional structure of mobile applications, where the mobile app

initiates backend APIs (Application Programming Interface) requests. Subsequently, these backend APIs, in

turn, invoke third-party external partner services, as illustrated in the diagram provided.

Figure 1.Common Workflow Patterns in Mobile Applications.

In this scenario, when the credit bureau service encounters downtime or begins to throw unexpected

exceptions, these issues propagate upward, directly impacting the user experience of applicants seeking

consumer loans. This can lead to suboptimal user experiences, customer abandonment, and ultimately, a

significant loss of business revenue.

To address these challenges and ensure a seamless, positive user experience, it is crucial to effectively

manage critical service downtime exceptions. The following section will delve into the proposed solutions to

tackle these issues.

3. Handling Critical service down

In this scenario, APIs invoking third-party critical services, such as those with credit bureaus, incorporate

resiliency measures. Calls to third-party APIs are designed to handle service downtime exceptions or

unexpected errors. If the calling API detects such unexpected behavior, it duplicates the application requests

and redirects them to a queue as messages. Once the requests are redirected to the queue, the APIs invoked

by the mobile application send an indicator back as an API response, indicating that one of the business-

critical services required to process the application is down. Based on this indicator, the mobile application

seamlessly manages the user experience and informs the user that one of the critical services is currently

unavailable. Users are assured that they will receive a notification once the service resumes and their

application will be processed.Depending on the health of the third-party service, further applications may

begin queuing up for processing.

 ISSN: 2249-0558Impact Factor: 7.119

113 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure 2. Handling critical service down with a Queue.

The queue messages contain the request payloads. For storing these intermittent messages, you have the

flexibility to choose between using any type of queue or storing them in a database. If the decision is to store

them in a database, it becomes essential to manage message states using indicators such as 'to process,'

'processing,' and 'processed.'

 For queue-based solutions in the cloud, you have options like:

 AWS (Amazon Web Services) Queues

 Microsoft Azure Service Bus

 Google Cloud Pub/Sub

If you prefer not to use cloud services, other queuing solutions include:

 RabbitMQ

 Apache Kafka

 Microsoft Message Queuing (MSMQ)

If the request payload is large, an alternative approach is to create a database record with a GUID

(Globally Unique Identifier) identifier and push that identifier to the queue. In this scenario, when a message

is dequeued from the queue, the processing backend job retrieves the request payload from the database using

the associated identifier. This method efficiently manages large payloads while ensuring data integrity and

retrieval when needed.For storing the intermittent state in the database, we can leverage the below table

schema as a starting point and tweak it according to the application-specific business:

 partner_name – external third-party partner name e.g. TransUnion

 service_name – Third-party external service name e.g. Bureau_Report

 current_state – this stores the request payload.

 is_processed – this is an indicator to identify the processing stages like, already processing,

processing, processed.

 The remaining columns are self-explanatory.

 ISSN: 2249-0558Impact Factor: 7.119

114 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure 3. Database table for storing request state.

4. Processing Queued Messages When the Service Recovers.

In the previous section, we discussed how messages are queued based on the health of the third-party

external service. Once one of the requests to the service is completed successfully, it serves as an indicator

that the service is on the path to recovery. To ensure accuracy, the decision to declare the service as healthy

can be configured to wait for a certain number of successful requests to be processed. Relying solely on the

result of a single request might not be optimal, especially if the third-party external service is in a recovery

stage. Once the threshold for the successfully processed requests is reached, the system will declare the status

of the service as healthy and then send a notification to the background job to start processing the messages

in the queue.

Figure 4. Processing queued applications once service turns healthy.

Once the backend job receives a notification to process the queued messages, it starts its job. As part of

this, each message performs the following steps:

 Dequeue the message from the queue.

 Depending on the strategy implemented to persist the request payload (as discussed in Section

3), retrieve the payload.

 ISSN: 2249-0558Impact Factor: 7.119

115 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 Call the external service with the retrieved payload and complete the remaining business

processes required for processing the loan application. If the call fails at this stage, move the

message to a separate exception queue for manual analysis.

 After completing the business process, send a notification to the end user using the notification

service. The notification service is another microservice responsible for sending various types of

notifications to end users. These notifications may include push notifications, SMS messages,

and email notifications.

Once a user receives the notification, the user can resume the application process, for a better user experience

message will contain a deep link for the mobile application, which will take the user to the exact next step in

the loan application process.Deep links are URLs that are designed to take users to specific content or screen

within a native mobile application, rather than just launching the app's home screen.

5. Benefits of the Resiliency Solutions Framework

Seamless User Experience: One of the primary advantages of this approach is its ability to maintain a

seamless user experience, even in the face of service disruptions. By promptly notifying users about service

unavailability and providing clear communication, the framework helps prevent frustration and

abandonment, ultimately enhancing user satisfaction.

Data Integrity and Reliability: The use of queuing mechanisms and payload storage strategies ensures

data integrity and reliability. Storing request payloads and managing message states in queues or databases

ensures that critical data and states remain accessible and secure, even during service downtime.

Resilience to Third-Party Service Failures: The framework's resiliency measures enable it to adapt to

third-party service failures efficiently. Duplicating and redirecting application requests to a queue, minimizes

the impact of service downtime on ongoing processes, allowing applications to queue up for later processing

when the service is restored.

In addition to the proactive resiliency measures outlined in this framework, it is essential to note that all

third-party services integrated also have robust retry patterns in place. These retry patterns are configured to

make multiple attempts, typically three times, with a 10-second delay between each attempt, to reestablish a

connection and successfully process requests in the event of temporary service disruptions. After three

retries, the approach of placing messages in the queue comes into play. By combining the retry patterns of

third-party services with a resiliency framework, we create a multi-layered approach to handle service

interruptions effectively.

6. Drawbacks for the Resiliency Solutions Framework

Complexity: Implementing the framework can introduce increased complexity to the application

architecture. The need for queuing mechanisms, message state management, and database integration may

require additional development efforts and maintenance.

7. Conclusion

In the FinTech world, where mobile applications serve as vital channels for critical transactions, the

resilience of these applications in the face of third-party service downtime is paramount. The Proactive

resiliency framework offers a solution to this challenge, prioritizing user-centricity, data integrity, and

streamlined processing.

Through the diligent handling of service disruptions, including the duplication and queuing of application

requests, the framework ensures that users experience minimal disruption and are promptly informed about

service unavailability. This commitment to user satisfaction enhances trust and fosters uninterrupted financial

operations. Furthermore, the framework's reliance on queuing mechanisms and payload storage strategies

guarantees data integrity and reliability, safeguarding essential data during service downtime. Additionally,

the system's adaptability to third-party service failures minimizes the impact on ongoing processes, allowing

applications to queue up for processing when services are restored.

While resiliency solution brings benefits, it is essential to acknowledge the complexity it introduces to

application architectures. Application development teams should be prepared for the additional effort and

maintenance required for additional components.

In conclusion, the resiliency framework exemplifies the importance of proactive communication and

strategic queuing in managing third-party service disruptions, especially those involving critical entities like

credit bureaus, in FinTech mobile applications. By prioritizing user satisfaction and data integrity, we

contribute to the resilience and reliability of these essential Fintech applications in an ever-evolving digital

landscape.

 ISSN: 2249-0558Impact Factor: 7.119

116 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

References
[1] Silva, Marco António Rodrigues Oliveira, "Improving the resilience of microservices-based applications",

University ofMinho, Dissertation reports, 19th Feb 2021.

[2] James Lewis, Martin Fowler, "Microservices: A Practitioner's Guide."

Retrieved from https://martinfowler.com/microservices, 21st Aug 2019

[3] Pethuru Raj, G. Sobers Smiles David, "Cloud Reliability Engineering: Technologies and Tools", 2021

[4] Roland Kuhn, Brian Hanafee, Jamie Allen, "Reactive Design Patterns", Chapter 12. Fault tolerance and recovery

patterns, Feb 2017

[5] www.jrebel.com, "Guide to Microservices Resilience Patterns",

Retrieved from https://www.jrebel.com/blog/microservices-resilience-patterns, 1st April 2020

[6] IcePanel, "Top 6 message queues for distributed architectures" Retrieved from https://icepanel.medium.com/top-6-

message-queues-for-distributed-architectures-a3cbabf08993, 18th May 2023

